APOSTILA 06

MÓDULO 31 -MATEMÁTICA - SETOR 111

> 3⁴ SÉRIE 22/08/2023

SEQUÊNCIAS

Sequência é um conjunto de elementos onde a ordem é IMPORTANTE!!

EXEMPLOS:

a)
$$(2,3,5,7,11)$$
 \neq $(3,2,5,11,7)$

$$\neq$$
 (3,2,5,11,7)

Representação Genérica

$$(a_1, a_2, a_3, a_4, a_5, \dots, a_9, a_{10}, \dots, a_{n-1}, a_n, a_{n+1}, \dots)$$

ANTECESSOR DE a_n

SUCESSOR DE a_n

$$(a_1, a_2, a_3, a_4 a, \dots, a_9, a_{10}, \dots, a_{n-1}, a_n, a_{n+1}, \dots)$$

$$(a_n)_{n\in\mathbb{N}}$$

OBS:

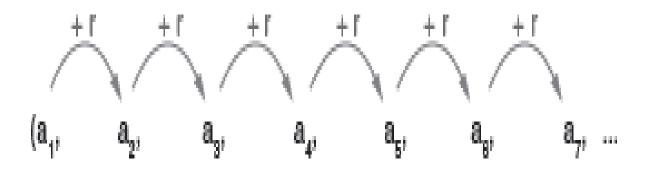
(a
$$_1$$
, a $_2$, a $_3$, a $_4$, a $_5$,, a $_9$, a $_{10}$,, a $_{n-1}$, a $_n$, a $_{n+1}$,)
$$(a_n)_{n\in\mathbb{N}}$$

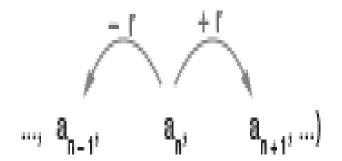
$$a_n + 1 \neq a_{n+1}$$

PROGRESSÃO ARITMÉTICA

Definição

Uma sequência numérica $\mathbf{a_n}$ é progressão aritmética de razão \mathbf{r} se, e somente se: $\mathbf{a_{n+1}} = \mathbf{a_n} + \mathbf{r}$, para todo inteiro $\mathbf{n} \ge 1$.





CLASSIFICAÇÃO DAS PROGRESSÕES ARITMÉTICAS

•
$$(2, 4, 6, 8, 10, ___, ...)$$
 $r =$

•
$$(-7, -3, 1, 5, 9, ___)$$
 $r =$

• (90, 80, 70, 60, 50, ___, ...)
$$\rightarrow$$
 r =

•
$$(2, -3, -8, -13, -18, ___)$$
 $r =$

CLASSIFICAÇÃO DAS PROGRESSÕES ARITMÉTICAS

• (2, 4, 6, 8, 10,
$$\underline{12}$$
 , ...) — $r = 2$ razão positiva
• (-7, -3, 1, 5, 9, $\underline{13}$) — $r = 4$ P.A. crescente

• (90, 80, 70, 60, 50,
$$40$$
, ...) $r = -10$ razão negativa
• (2, -3, -8, -13, -18, -23) $r = -5$

• (8, 8, 8, 8, 8,
$$\frac{8}{2}$$
, ...) — $r = 0$ $razão nula P.A. constante$

$$a_2 = a_1 + 1 \cdot r$$

$$\mathbf{a}_3 = \mathbf{a}_1 + 2 \cdot r$$

$$\mathbf{a}_4 = \mathbf{a}_1 + \mathbf{3} \cdot \mathbf{r}$$

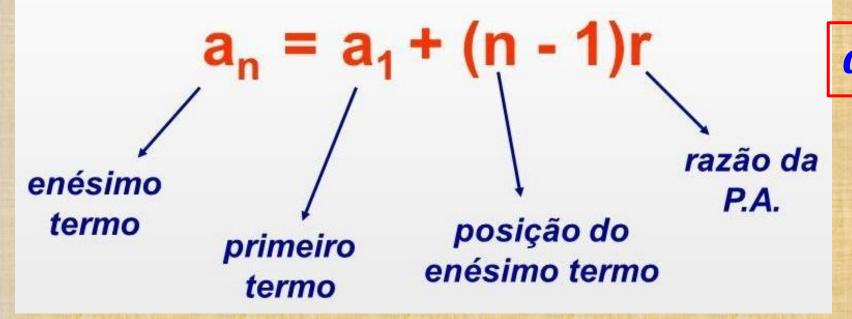
$$\mathbf{a}_5 = \mathbf{a}_1 + 4 \cdot \mathbf{r}$$

$$\mathbf{a}_6 = \mathbf{a}_1 + \mathbf{5} \cdot \mathbf{r}$$

$$a_7 = a_1 + 6 \cdot r$$

Termo Geral de uma P.A.

Fórmula do Termo Geral

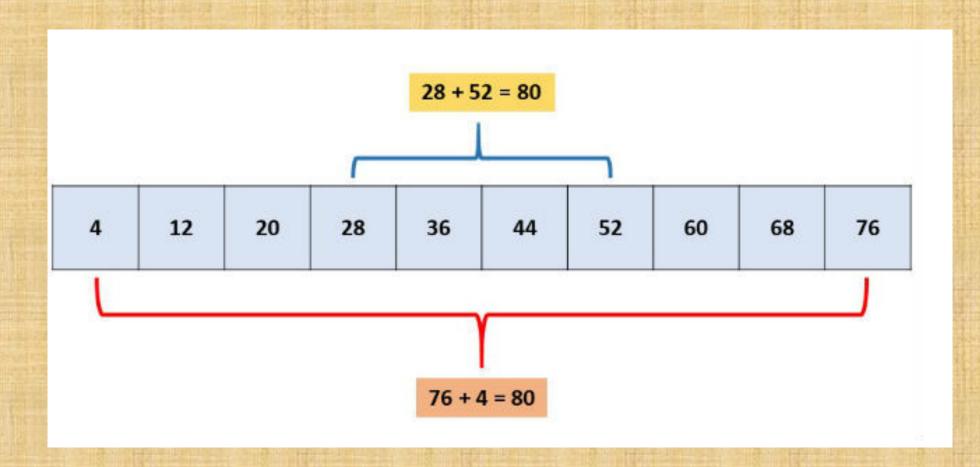


OUTRA FÓRMULA

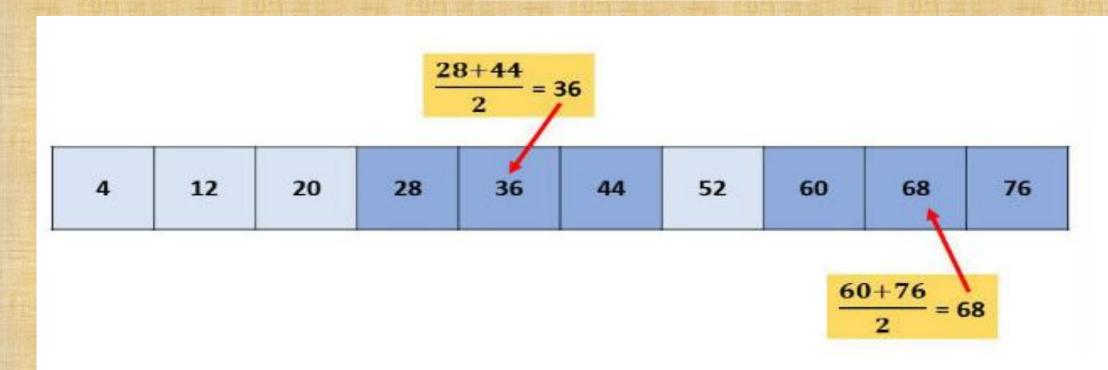
$$a_n = a_p + (n - p).r$$

PROPRIEDADES

TERMOS EQUIDISTANTES



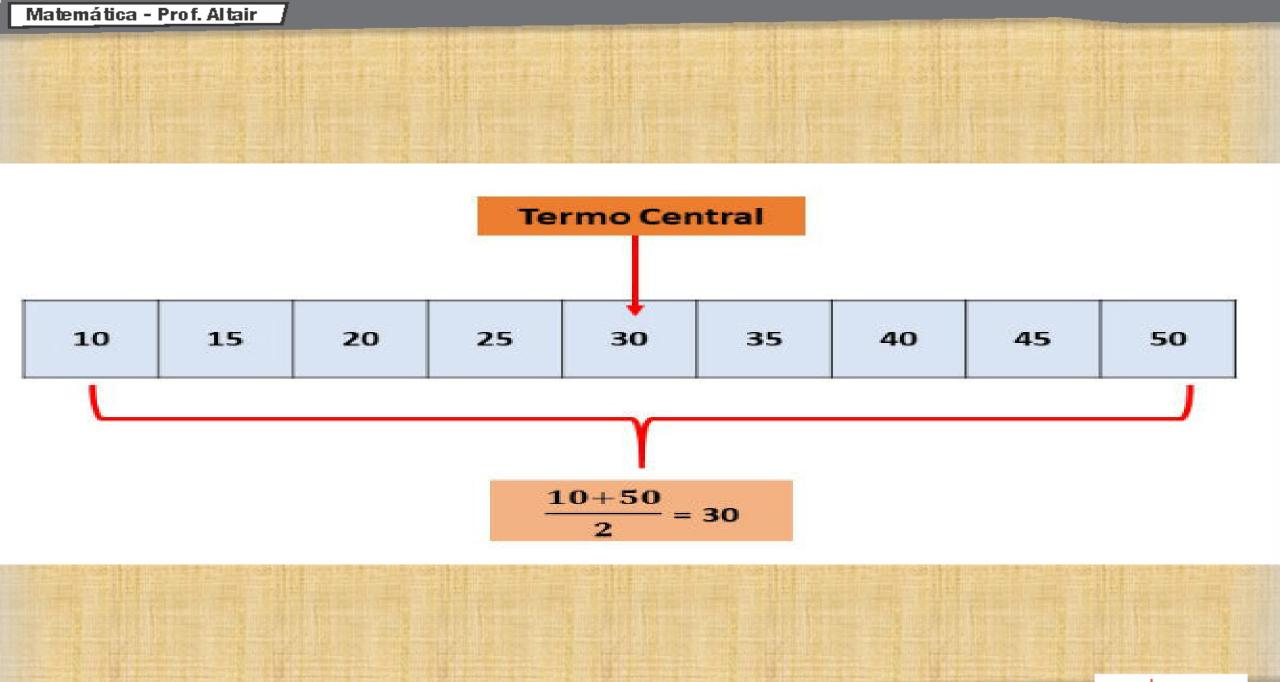
TERMO CENTRAL



(a, b, c) =>
$$b = \frac{a+c}{2}$$

ou

$$2 b = a + c$$



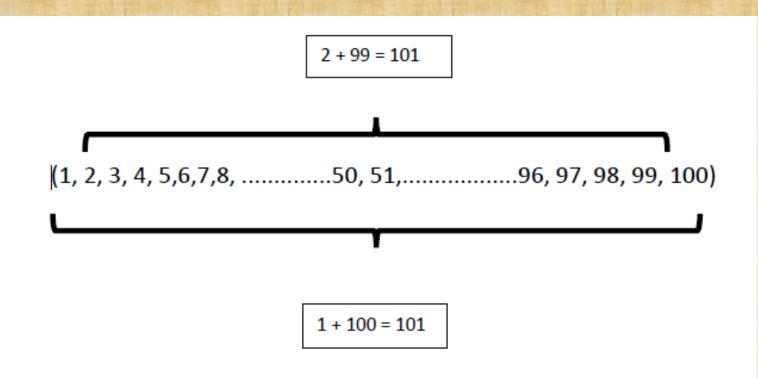
REPRESENTAÇÃO CONVENIENTE

PA com três termos:

PA com quatro termos:

PA com cinco termos:

SOMA DOS N TERMOS DE UM P.A.



$$S_n = \frac{(a_1 + a_n) \cdot n}{2}$$

$$S_{100} = (1 + 100).50 = 5050$$

$$S_{100} = \frac{(1+100) \cdot 100}{2}$$

$$S_{100} = \frac{101 \cdot 100}{2}$$

$$S_{100} = \frac{10100}{2}$$

$$S_{100} = 5050$$

RESUMO

1. Definição

$$a_n = a_{n-1} + r$$

sendo n ∈ N, n > 1 e r a razão da PA.

2. Classificação

- r > 0: progressão aritmética crescente
- r < 0: progressão aritmética decrescente
- r = 0: progressão aritmética constante

3. Termo geral

$$a_n = a_1 + (n-1) \cdot r$$
, em que $n \in \mathbb{N}^*$ e r é a razão da PA.

4. Artificios

PA com três termos:

PA com quatro termos:

· PA com cinco termos:

Propriedade

1. Termos equidistantes dos extremos

Considere-se a PA: $(a_1, a_2, a_3, ... a_p, ... a_q, ... a_{n-2}, a_{n-1}, a_n)$. Os termos a_p e a_q serão ditos equidistantes dos extremos se, e somente se, p + q = 1 + n.

A soma de dois termos equidistantes dos extremos é igual à soma desses extremos.

2. Soma dos n primeiros termos da PA

Seja S_n a notação que representa a soma dos n primeiros termos de uma progressão aritmética. Assim:

$$S_n = \frac{(a_1 + a_n) \cdot n}{2}$$